
IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

Openflow Protocol in Software Defined Networks
V. Rajesh

1
, S. Sindhura

2

1
Assistant Professor, CSE Department, PVP Siddhartha Institute of Technology

2
Assistant Professor, CSE Department, KLEF

Abstract—The Internet has led to the creation of a digital

society, where (almost) everything is connected and is accessible

from anywhere. However, despite their widespread adoption,

traditional IP networks are complex and very hard to manage. It

is both difficult to configure the network according to predefined

policies, and to reconfigure it to respond to faults, load and

changes. To make matters even more difficult, current networks

are also vertically integrated: the control and data planes are

bundled together. Software-Defined Networking (SDN) is an

emerging paradigm that promises to change this state of affairs,

by breaking vertical integration, separating the network’s control

logic from the underlying routers and switches, promoting

(logical) centralization of network control, and introducing the

ability to program the network. The separation of concerns

introduced between the definition of network policies, their

implementation in switching hardware, and the forwarding of

traffic, is key to the desired flexibility: by breaking the network

control problem into tractable pieces, SDN makes it easier to

create and introduce new abstractions in networking, simplifying

network management and facilitating network evolution. In this

paper we present a comprehensive survey on SDN. We start by

introducing the motivation for SDN, explain its main concepts

and how it differs from traditional networking, its roots, and the

standardization activities regarding this novel paradigm. Next,

we present the key building blocks of an SDN infrastructure

using a bottom-up, layered approach. We provide an in-depth

analysis of the hardware infrastructure, southbound and

northbound APIs, network virtualization layers, network

operating systems (SDN controllers), network programming

languages, and network applications. We also look at cross-layer

problems such as debugging and troubleshooting. In an effort to

anticipate the future evolution of this new paradigm, we discuss

the main ongoing research efforts and challenges of SDN. In

particular, we address the design of switches and control

platforms – with a focus on aspects such as resiliency, scalability,

performance, security and dependability – as well as new

opportunities for carrier transport networks and cloud

providers. Last but not least, we analyze the position of SDN as a

key enabler of a software-defined environment. . OpenFlow

enables a central controller to remotely provision the underlying

data plane device forwarding tables in a common,scalable way,

and eliminates the vendorspecific, proprietary nature of legacy

networking equipment. Specifically, OpenFlow enables

automation through a centralized software controller that

eliminates the need to program devices and interfaces for every

network service request.

Index Terms—Software-defined networking,OpenFlow, netwo

-rk virtualization,networkoperatingsystems ,programmable net

worksnetworkhypervisor,programminglanguages,flowbased

networking, scalability , dependability, carrier-grade

networks,software-defined environments.

1. INTRODUCTION

The distributed control and transport network protocols

running inside the routers and switches are the key

technologiesthat allow information, in the form of digital

packets, totravel around the world. Despite their widespread

adoption,traditional IP networks are complex and hard to

manage.To express the desired high-level network policies,

networkoperators need to configure each individual network

deviceseparately using low-level and often vendor-specific

commands.In addition to the configuration complexity,

networkenvironments have to endure the dynamics of faults

andadapt to load changes. Automatic reconfiguration

andresponsemechanisms are virtually non-existent in current

IP networks.Enforcing the required policies in such a dynamic

environmentis therefore highly challenging.To make it even

more complicated, current networks arealso vertically

integrated. The control plane (that decides howto handle

network traffic) and the data plane (that forwardstraffic

according to the decisions made by the control plane)are

bundled inside the networking devices, reducing flexibilityand

hindering innovation and evolution of the

networkinginfrastructure. The transition from IPv4 to IPv6,

started morethan a decade ago and still largely incomplete,

bears witnessto this challenge, while in fact IPv6 represented

merely aprotocol update. Due to the inertia of current IP

networks,a new routing protocol can take 5 to 10 years to be

fullydesigned, evaluated and deployed. Likewise, a clean-slate

approach to change the Internet architecture (e.g.,

replacingIP), is regarded as a daunting task – simply not

feasible inpractice. Ultimately, this situation has inflated

thecapital and operational expenses of running an IP

network.Software-Defined Networking (SDN) is an

emergingnetworking paradigm that gives hope to change the

limitationsof current network infrastructures. First, it

breaksthe vertical integration by separating the network’s

controllogic (the control plane)

from the underlying routers andswitches that forward the

traffic (the data plane). Second,with the separation of the

control and data planes, networkswitches become simple

forwarding devices and the controllogic is implemented in a

logically centralized controller (or network operating system).

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

Figure 1:SDN System Architecture

 A simplifiedview of this architecture is shown in Figure 1. It

is importantto emphasize that a logically centralized

programmatic modeldoes not postulate a physically

centralized system. In fact,the need to guarantee adequate

levels of performance, scalability, reliability would include

such a solution. Instead , production level SDN

networkdesigns resort to physically distributed control

planes.

The separation of the control plane and the data planecan be

realized by means of a well-defined programminginterface

between the switches and the SDN controller. The controller

exercises direct control over the state in the dataplane

 elements via this well defined application programming

 interface (API), as depicted in Figure 1. The most notable

 example of such an API is OpenFlow.AnOpenFlow switch

has one or more tables of packet-handling rules (flowtable).

Each rule matches a subset of the traffic and performs certain

 actions(dropping,forwarding,modifying etc.)

on the traffic. Depending on the rules installed by a

controller application, an OpenFlow switch can – instructed by

the controller – behave like a router, switch, firewall, or

perform other roles (e.g., load balancer, traffic shaper, and

in general those of a middle box).

An important consequence of the software-defined networking

 principles is the separation of concerns introduced between

the definition of network policies, their implementation in

switching hardware, and the forwarding of traffic. This

separation is key to the desired flexibility, breaking then

 network control problem into tractable pieces, and making

 it easier to create and introduce new abstractions in

networkingsimplifying network management and facilitating

network evolution and innovation. AlthoughSDN and

OpenFlow started as academic experiments they gained

significant traction in the industry over the past few years.

Most vendors of commercial switches now include support of

the OpenFlow API in their equipment.SDN momentum was

strong enough make Google,Facebook,Yahoo,Microsoft,

Deutsche Telekom fund OpenNetworkFoundation(ONF)

with the main goalof promotion and adoption of SDN through

open standards development. As the initial concerns with SDN

scalabilitywere addressed – in particular the myth that

logicalcentralization implied a physically centralized

controller, anissue we will return to later on – SDN ideas have

maturedand evolved from an academic exercise to a

commercialsuccess. Google, for example, has deployed a

software-definednetwork to interconnect its data centers

across the globe.This production network has been in

deployment for 3 years,helping the company to improve

operational efficiency and significantly reduce

 costs.VMware’s network virtualizationPlatform. As a final

example, theworld’s largest IT companies (from carriers and

equipmentmanufacturers to cloud providers and financial-

services companies)have recently joined SDN consortia such

as the ONFand the OpenDaylight initiative another indication

of theimportance of SDN from an industrial perspective.

II. WHAT IS SOFTWARE-DEFINED NETWORKING?

The Open Networking Foundation (ONF) is the group that

is most associated with the development and standardization

of SDN. According to the ONF. “Software-Defined

Networking (SDN) is an emerging architecture that is

dynamic, manageable, cost-effective, and adaptable, making it

ideal for the high-bandwidth, dynamic nature of today’s

applications. This architecture decouples the network control

and forwarding functions enabling the network control to

become directly programmable and the underlying

infrastructure to be abstracted for applications and network

services. The OpenFlow protocol is a foundational element for

building SDN solutions.”

We define an SDN as a network architecture with five pillars:

 .Directly programmable:Network control is

directly programmable because it is decoupled

from forwarding functions.
 Agile:Abstracting control from forwarding lets

administrators dynamically adjust network-wide

traffic flow to meet changing needs.

 Centrally managed:Network intelligence is

(logically) centralized in software-based SDN

controllers that maintain a global view of the

network, which appears to applications and

policy engines as a single, logical switch.

 Programmatically configured: SDN lets

network managers configure, manage, secure,

and optimize network resources very quickly via

dynamic, automated SDN programs, which they

can write themselves because the programs do

not depend on proprietary software.

 Openstandards based vendor neutral:When

implemented through open standards, SDN

simplifies network design and operation because

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

instructions are provided by SDN controllers

instead of multiple, vendor-specific devices and

protocols.

The strong coupling betweencontrol and data planes has made

it difficult to add newfunctionality to traditional networks, a

fact illustrated inFigure 6 The coupling of the control and data

planes(andits physical embedding in the network elements)

makes thedevelopment and deployment of new networking

features(e.g., routing algorithms) very hard since it would

imply amodification of the control plane of all network

devices –through the installation of new firmware and ,in

some cases hardware

upgrades.Hence,theNewnetworkingfeaturesarecommonly

introduced via expensive, specializedand hard-

toconfigureequipment(akamiddle boxes) such as load

 balancers, intrusion detection system(IDS).

andfirewalls, among others.These middleboxes need to be

placed strategically in thenetwork, making it even harder to

later change the networktopology,configuration,andfuncti

-onality.In contrast, SDN decouples the control plane from

thenetwork devices and becomes an external entity: the

network

operatingsystem or SDN controller. This approach has

severaladvantages:
 All applications can take advantage of the same

networkinformation (the global network view),

leading (arguably) to more consistent and effective

policy decisions while re-using control plane

software modules.

Fig 2: Traditional networking versus SoftwareDefined

Networking (SDN)

 These applications can take actions(,reconfigure

forwardingdevices) from any part of the network.

There is therefore no need to devise a precise strategy

about the location of the new functionality.

 The integration of different applications becomes

more Straightforward. For instance, load balancing

and routing applications can be combined

sequentially, with load balancing decisions having

precedence over routing policies.

A.Terminology

To identify the different elements of an SDN as

unequivocallyas possible, we now present the essential

terminologyused throughout this work.

Forwarding Devices (FD): Hardware- or software-based

dataplanedevices that perform a set of elementary operations.

TheForwardingdevices have well-defined instruction sets

(e.g.,Flow rules) used to take actions on the incoming

packets(e.g., forward to specific ports, drop, forward to the

controller,rewrite some header). These instructions are defined

by southbound interfaces (e.g.,OpenFlow ,For CES Protocol-

Oblivious Forwarding (POF)) and are installed in

theforwarding devices by the SDN controllers implementing

the

southbound protocols.

Data Plane (DP):Forwarding devices are interconnected

throughwireless radio channels or wired cables. The net-

workinfrastructure comprises the interconnected

forwardingdevices, which represent the data plane.

Southbound Interface (SI): The instruction set of the forward

-ingdevices is defined by the southbound API, which is part

of the southbound interface. Furthermore, the SI also defines

the communication protocol between forwarding devices

andcontrol plane elements. This protocol formalizes the way

thecontrol and data plane elements interact.

Control Plane (CP): Forwarding devices are programmed

bycontrol plane elements through well-defined SI

embodiments.The control plane can therefore be seen as the

“network brain”All control logic rests in the applicationsand

controllers, which form the control plane.

Northbound Interface (NI): The network operating system

canoffer an API to application developers. This API represents

anorthbound interface, i.e., a common interface for

developingapplications. Typically, a northbound interface

abstracts thelow level instruction sets used by southbound

interfaces toprogram forwarding devices.

Management Plane (MP):The management plane is the set

of applicationsthat leverage the functions offered by the

NI to implement networkcontrol and

operationlogic.Thisincludes applicationssuchas routing

firewalls ,load balancers

monitoring, and so forth.Essentially, a management applica

tiondefines the policies, which are ultimately translated to

southbound-specific instructions that program the behavior

ofthe forwarding devices.

B. Alternative and Broadening Definitions:

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

The definition of SDN will likely continue tobroaden,

drivenby theindus -try business-oriented viewson SDN–

irrespectiveof thedecouplingof the control plane. In this

survey, wefocus on the original,“canonical” SDN definition

based on the forementionedkey pillars and the

conceptoflayered abstractions.However,for the sake

ofcompleteness and clarity, weacknowledge alternative SDN

definitions ,including:Control Plane / Broker SDN: A

networking approachthatretains existing distributed control

planes but offers newAPIs that allow applicationsto interact

(bidirectionally) withthe network. An SDN controller –often

called orchestration platform– acts as a broker between the

applications and thenetwork elements. This

approacheffectively presents controlplane data to the

application and allows a certain degree ofnetwork

programmability by means of “plug-ins” between the

orchestrator function andnetwork protocols. This API-driven

approach corresponds to a hybrid model of SDN, since it

enablesthe broker to manipulate and directly interact with

the control planes of devices such as routers and

switches.Examplesofthis view on SDN include recent

standardizationefforts at IETF -and the design

philosophybehind theOpenDaylight project that goes

beyondtheOpenFlow split control mode.

 III. OPENFLOW PROTOCOL:

The OpenFlow protocol is the most commonly used

protocol for the southbound interface of SDN, which

separates the data plane from the control plane. The white

paper about OpenFlow points out the advantages of a flexibly

configurable forwarding plane. OpenFlow was initially

proposed by Stanford University, and it is now standardized

by the ONF . In the following, we first give an overview of the

structure of OpenFlow and then describe the features

supported by the different specifications.

Overview:

The OpenFlow architecture consists of three basic concepts.

(1) The network is built up by OpenFlow-compliant switches

that compose the data plane; (2) the control plane consists of

one or more OpenFlow controllers; (3) a secure control

channel connects the switches with the control plane. In the

following, we discuss OpenFlow switches and controllers and

the interactions among them. An OpenFlow-compliant switch

is a basic forwarding device that forwards packets according

to its flow table. This table holds a set of flow table entries,

each of which consists of match fields, counters and

instructions. Flow table entries are also called flow rules or

flow entries. The “header fields” in a flow table entry describe

to which packets this entry is applicable. They consist of a

wildcard-capable match over specified header fields of

packets. To allow fast packet forwarding with OpenFlow, the

switch requires ternary content addressable memory (TCAM)

that allows the fast lookup of wildcard matches. The header

fields can match different protocols depending on the

OpenFlow specification, e.g., Ethernet, IPv4, IPv6 or MPLS.

The “counters” are reserved for collecting statistics about

flows. They store the number of received packets bytes, as

well as the duration of the flow. The “actions” specify how

packets of that flow are handled. Common actions are

“forward”, “drop”,”modifyfield”, etc.

HeaderFields Counters Actions

 Figure 3:Flow table entry for openflow

A.Openflow:

 A software program, called the controller, is

responsible for populating and manipulating the flow tables of

the switches. By insertion, modification and removal of flow

entries,thecontroller can modify the behavior of theswitches

with regard to forwarding. The OpenFlow specification

defines the protocol that enables the controller to instruct the

switches. To that end, the controller uses a secure control

channel. Three classes of communication exist in the

OpenFlow protocol: controller-to-switch, asynchronous and

symmetric communication .The controller-to-switch

communication is responsible for feature detection,

configuration, programming the switch and information

retrieval. Asynchronous communication is initiated by the

OpenFlow-compliant switch without any solicitation from the

controller. It is used to inform the controller about packet

arrivals, state changes at the switch and errors. Finally,

symmetric messages are sent without solicitation from either

side, i.e., the switch or the controller are free to initiate the

communication without solicitation from the other side.

Examples for symmetric communication are hello or echo

messages that can be used to identify whether the control

channel is still live and available.

Figure 4: Basic packet forwarding with OpenFlow in a switch

The basic packet forwarding mechanism with OpenFlow is

illustrated in Figure 4. When a switch receives a packet, it

parses the packet header, which is matched against the flow

table. If a flow table entry is found where the header field

wildcard matches the header, the entry is considered. If several

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

such entries are found, packets are matched based on

prioritization, i.e., the most specific entry or the wildcard with

the highest priority is selected. Then, the switch updates the

counters of that flow table entry. Finally, the switch performs

the actions specified by the flow table entry on the packet,

e.g., the switch forwards the packet to a port. Otherwise, if no

flow table entry matches the packet header, the

switch generally notifies its controller about the packet, which

is buffered when the switch is capable of buffering. To that

end, it encapsulates either the unbuffered packet or the first

bytes of the buffered packet using a PACKET-IN message and

sends it to the controller; it is common to encapsulate the

packet header and the number of bytes defaults to 128. The

controller that receives the PACKET-IN notification identifies

the correct action for the packet and installs one or more

appropriate entries in the requesting switch. Buffered packets

are then forwarded according to the rules; this is triggered by

setting the buffer ID in the flow insertion message or in

explicit PACKET-OUT messages. Most commonly, the

controller sets up the whole path for the packet in the network

by modifying the flow tables of all switches on the path.

Figure 5:OpenFlow enabled SDN devices

 IV .DESIGN CHOICES FOR OPENFLOW

 BASED SDN

 Today, SDN is mostly used for flexible and

programmable data centers. There is a need for network

virtualization, energy efficiency and dynamic establishment

and enforcement of network policies. An important feature is

the dynamic creation of virtual networks, commonly referred

to as network-as-a-service (NaaS). Even more complex

requirements arise in multi-tenant data center environments.

SDN can provide these features easily, due to its flexibility

and programmability. Future Internet 2014, 6 320 However,

SDN is also discussed in a network or Internet service

provider (ISP) context. Depending on the use case, the design

of SDN architectures varies a lot. In this section, we point out

architectural design choices for SDN. We will discuss their

implications with regard to performance, reliability and

scalability of the control and data plane and refer to research

on these topics.

 V.DISCUSSIONS OFOPENFLOW-BASED SDN:

 In this work, we have shown that OpenFlow-based

SDN provides than conventional networking architectures, so

that new features and network applications can be added to

networks more easily. Researchers have analyzed OpenFlow-

based SDN in various networking areas and showed

improvements, even for complex networking tasks and

features. We presented network applications in the fields of

network security, traffic engineering, network management,

middlebox networking, virtualization and inter-domain routing

. All those network applications are facilitated by the SDN

control plane. It provides a consistent and global view of the

Figure6 :flow table entry

network, which enables network control algorithms to be

written in a simplified fashion. The control plane is software-

based and can run on powerful server hardware with lots of

memory and modern CPUs, which enables computation-

intensive route calculations in practice, such as traffic

engineering and route optimization. Moreover, the number of

control elements in OpenFlow-based SDN is usually smaller

than the number of forwarding elements, which facilitates

upgrades. However, OpenFlow-based SDN possibly requires

data plane updates for new protocols, if the set of operations

offered by an OpenFlow specification is insufficient. The

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

OpenFlow protocol provides more flexibility because new

match fields can be defined using the OpenFlow Extensible

Match (OXM). Other southbound interfaces are more flexible

than OpenFlow, e.g., Forces offers a more programmable data

plane. As the control server sets the flow table entries in

OpenFlow switches via the OpenFlow protocol, the frequency

of configuration requests by OpenFlow switches may drive the

control server to its limit, Future Internet 2014, 6328 so that a

bottleneck may occur. Such situations may happen in the

presence of a large number of fine-grained flow table entries

that occur in large networks with many switches and end-hosts

or in the presence of network failures or updates when many

flows need to be simultaneously rerouted. We presented

various works that discuss and improve the control plane

scalability of OpenFlow by leveraging hierarchical control

structures or intelligent flow rule distribution. Software-based

network applications enable network innovation. Nonetheless,

complex software often contains many bugs, which also holds

for network control algorithms. Failures in network control

software can cause failures and outages in a network.

Therefore, the correctness of network applications, which are

applied to critical infrastructure, have to be correct and well

tested before they are deployed. We discussed several

approaches for the testing and verification of SDN software .

In addition, the OpenFlow data plane faces scalability issues.

OpenFlow switches support wildcard matches that are used to

classify packets to flows. Thus, fast packet forwarding for

OpenFlow requires special hardware: TCAM is used in

switches for the fast lookup of wildcard matches. TCAM size

is often very limited, due to the high cost. Serious scalability

problems can occur when many flow table entries are needed.

The number of necessary flow table entries increases for larger

networks, excessive use of fine-grained matches and data

plane resilience methods. We discussed several proposals in

that improve the performance of the OpenFlow data plane,

especially with regard to the limited number of flow table

entries. This discussion shows that it is recommendable to

investigate prior to deployment whether the advantages of

OpenFlow-based SDN solutions outweigh its scalability

concerns, which both depend on the specific use case.

References:

[1] T. Benson, A. Akella, and D. Maltz, “Unraveling the

complexity ofnetwork management,” in Proceedings of

the 6th USENIX Symposium on Networked Systems

Design and Implementation, ser. NSDI’09,

Berkeley, CA, USA, 2009, pp. 335–348.

[2]B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A.

Ghodsi, andS. Shenker, “Software-defined internet

architecture:Decoupling architecture from infrastructure”,

inProceedings of the 11thWorkshop on Hot Topics in

Networks, ser. HotNets-XI. New York, NY, USA: ACM,

2012, pp. 43–48.

[3] "OpenFlow: Enabling Innovation in Campus Networks

McKeown, T. Andershnan, G.Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turneron, H.

BalakrisACMComputer Communication Review, Vol.

38, Issue 2, pp. 69-74 April 2008

[4] Richard Wang, Dana Butnariu, and Jennifer Rexford

OpenFlow-based server load balancing gone wild,

 Workshop on Hot Topics in Management of Internet,

 Cloud, and Enterprise Networks and Services (Hot-ICE),

 Boston, MA, March 2011.

[5] NOX: Towards an Operating System for Networks

https://sites.google.com/site/routeflow/home

http://www.openflow.org/https://sites.google.com/site/routef

low/home

 http://www.openflow.org/

https://sites.google.com/site/routeflow/home
https://sites.google.com/site/routeflow/home
https://sites.google.com/site/routeflow/home

IJDCST @ May-June-2021, Issue- V-7, I-1, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

